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ABSTRACT—To date, no studies have attempted to utilize data from a combination of vital signs, heart rate variability and
complexity (HRV, HRC), as well as machine learning (ML), for identifying the need for lifesaving interventions (LSIs) in
trauma patients. The objectives of this study were to examine the utility of the above for identifying LSI needs and compare
different LSI-associated models, with the hypothesis that an ML model would be superior in performance over multivariate
logistic regression models. One hundred four patients transported from the injury scene via helicopter were selected for the
study. A wireless vital signs monitor was attached to the patient’s arm and used to capture physiologic data, including HRV
and HRC. The power of vital sign measurements, HRV, HRC, and Glasgow Coma Scale score (GCS) to identify patients
requiring LSIs was estimated using multivariate logistic regression and ML. Receiver operating characteristic (ROC) curves
were also obtained. Thirty-two patients underwent 75 LSIs. After logistic regression, ROC curves demonstrated better
identification for LSIs using heart rate (HR) and HRC (area under the curve [AUC] of 0.81) than using HR alone (AUC of
0.73). Likewise, ROC curves demonstrated better identification for LSIs using GCS and HRC (AUC of 0.94) than using GCS
and HR (AUC of 0.92). Importantly, ROC curves demonstrated that an ML model using HR, GCS, and HRC (AUC of 0.99)
had superior performance over multivariate logistic regression models for identifying the need for LSIs in trauma patients.
Development of computer decision support systems should utilize vital signs, HRC, and ML in order to achieve more
accurate diagnostic capabilities, such as identification of needs for LSIs in trauma patients.

KEYWORDS—Machine learning, lifesaving interventions, heart rate complexity, heart rate variability, trauma

ABBREVIATIONS—AUC V area under the curve; CDS V computer decision support; CI V confidence interval; DBP V
diastolic blood pressure; ECGV electrocardiogram; EDV emergency department; GCSVGlasgow Coma Scale; HFV high
frequency; HR V heart rate; HRC V heart rate complexity; HRV V heart rate variability; LF V low frequency; LSI V
lifesaving intervention; MAP V mean arterial pressure; ML V machine learning; ROC V receiver operating characteristic;
RRV respiratory rate; SampEnV sample entropy; SIV Shock index; SPO2 V blood oxygenation; WVSMVWireless Vital
Signs Monitor

INTRODUCTION

Capture of high-frequency (HF) data for real-time triage and

assessment of trauma patients is now a viable option due to

advances in sensor technology and computing power in mobile

platforms (1, 2). These advances will allow for a new gener-

ation of information-driven computer decision support (CDS)

systems that could significantly enhance medical decision

making and lead to improvements in outcome (2Y5). Still, in order

to achieve more accurate diagnostic capabilities, development

of these systems may require new approaches based on com-

binations of standard vital signs, trends, and signal-derived

metrics, fused with advanced artificial intelligence or machine

learning (ML) technologies (2, 6, 7).

Previous studies have shown that standard vital signs alone

may not be reliable for timely and accurate assessment of true

injury severity in trauma patients because of erroneous mea-

surements or inherent physiologic compensatory mechanisms,

which could lead to errors in diagnosis (8Y12). However, use

of new advanced indices derived from the electrocardiogram

(ECG)Vnamely, heart rate variability and complexity (HRV,

HRC)Vmay provide one alternative for monitoring trauma

patients more reliably and accurately (13Y18). HRV and HRC

metrics have been shown to be useful not only for detecting

acute changes in patient stability (13, 18) but also for risk

stratification (15, 16) and identification of patients requiring

lifesaving interventions (LSIs) (14, 17). Furthermore, they are

noninvasive and can be calculated via automation and telem-

etry within seconds (16, 17, 19). Whereas vital signs may

originate from a single source of failure, streaming HRV and

HRC values can be obtained from multiple asynchronous

waveform sources (20). Nevertheless, HRV and HRC have

several significant drawbacks, including limited use in the
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presence of high noise levels in the captured waveforms

(20Y23). Therefore, development of advanced CDS systems

may need to utilize combinations of standard vital signs in

addition to HRV and HRC indices in order to provide better

diagnosis capabilities in complex patient care environments

and mitigate issues related to processing of individual data

sources.

In addition, because medical decision making is highly

complex, subjective, and difficult to predict (6, 17, 24), new

CDS systems need to incorporate more objective tools such as

artificial intelligence and ML into the decision-making process

to effectively process and fuse multiple heterogeneous data

sources generated by the patient. By modeling relationships

between seemingly disparate parameters and outcomes using

ML techniques, CDS systems could not only equip providers

in the intensive care unit with more accurate, actionable in-

formation, such as which potential treatments to prescribe (4, 5)

or when to perform LSIs (6), but also enhance the medic’s

ability to assess battlefield injuries (automated triage) (2, 6).

Although the last few decades have witnessed an emergence

of various CDS systems and studies investigating their clinical

relevance/performance (4, 5), to date, no studies have attempted

to utilize data from a combination of standard vital signs, HRV,

and HRC, as well as ML, for purposes of identifying needs for

LSIs in trauma patients, nor have studies attempted to compare

different LSI identification models for different injury patterns.

The aims of this study were to (a) confirm that HRV and HRC

can discriminate between those patients who received one or

more LSIs and those who received none and (b) examine the

efficacy of a combined model of standard vital signs, HRV, and

HRC, for predicting the need for LSIs in trauma patients using

both multivariate regression modeling and ML-based modeling.

Our hypothesis was that an ML system utilizing vital signs,

HRV, and HRC to identify the needs for LSIs would be able to

outperform standard statistically derived multivariate logistic

regression models.

MATERIALS AND METHODS

Subjects and protocol
This study was approved by the institutional review board at the University

of Texas Health Science Center, Houston, Tex. The data set used in this study
consisted of a convenience cohort of 104 patients transported via the Life
Flight helicopter service to the Memorial Hermann Hospital, a level I trauma
center in Houston, Tex, between June 27, 2011, and January 6, 2012. All
patients were prehospital trauma patients, and all wore a Wireless Vital Signs
Monitor (WVSM; Athena GTX, Inc, Des Moines, Iowa) system during transport,
admission to the hospital, and stay in the emergency department (ED). The
WVSM was used to capture numeric and waveform data, which were then
transmitted to a computerized server system via a wireless connection. Thus, both
prehospital and ED LSIs were performed during continuous WVSM monitoring.

Numeric data from the WVSM device were stored at a rate of 1 Hz. These
data included HRV calculated every second via the method of an HFYlow-
frequency (LF) power spectrum ratio (25, 26), and HRC calculated every
second via the method of sample entropy (SampEn) (27) (see Heart rate vari-
ability and complexity). Total Glasgow Coma Scale (GCS) scores were also
recorded every second in order for scores to be time synchronized with other
numeric data at 1 Hz and updated only upon manual entry from the WVSM
device. In other words, all scores were determined manually by physical ex-
amination, recorded continuously, and inputted into the device whenever pa-
tient status changed.

Single-lead ECG waveform data and plethysmograph waveform data from
a thumb-mounted pulse oximeter to the WVSM were recorded at rates of 230
and 75 Hz, respectively. For intubated patients, respiration waveform data
were also recorded at a rate of 10 Hz using a handheld capnograph/oximeter

(Microcap; Covidien, Mansfield, Mass). Standard vital signs used during
trauma care for patient assessment included heart rate (HR), systolic blood
pressure (SBP), diastolic blood pressure (DBP), mean arterial pressure (MAP),
respiratory rate (RR), and blood oxygenation (SPO2). Combinations of these
vital signs were also used to derive other measurements, including shock index
(SI = HR/SBP) and pulse pressure (PP = SBP j DBP).

All nonelectronic data were manually recorded on an electronic run sheet
(RescueNet ePCR; Zoll Medical, Chelmsford, Mass) by emergency medical
services medics, then collected on a standardized form and entered into a da-
tabase (OpenClinica, https://www.openclinica.com/). These included demo-
graphic data, physical examination results, individual components of GCS
scores (motor, eye, verbal), and interventions performed on the patients in the
field and ED. Prehospital and ED LSIs consisted of angioembolizations, blood
transfusions, cardioversions, cardiopulmonary resuscitations, cricothyrotomies,
endotracheal intubations, pericardiocenteses, thoracotomies, tourniquets, tube
thoracostomies, and needle decompressions.

Heart rate variability and complexity
For this study, HRV was derived using a fast Fourier transform of the R-R

intervals captured from the patient’s ECG. An HRV index was computed using
the ratio of the HF power (HF: 0.15Y0.4 Hz) corresponding to the parasym-
pathetic (vagal) activation to the LF power (LF: 0.04Y0.15 Hz) corresponding
to the sympathetic and vagal activation (26).

Heart rate complexity quantifies the structural complexity in the R-R in-
terval sequence (i.e., complexity in the patterns of the HR time series) (22,
26Y28). For this study, HRC was calculated via the method of SampEn (m, r, N)
because of its suitability for analysis of shorter time series. Sample entropy was
calculated using the negative natural logarithm of the conditional probability
that two epochs similar for m intervals remain similar at the next interval,
given a sequence of N intervals and excluding self-matches. In this case,
similarity was defined as intervals differing by no more than some tolerance r (in
milliseconds) (26). Values of SampEn were obtained by the following equations:

SampEnðm; r;NÞ ¼jlnðA=BÞ; ð1Þ
B ¼ ½ðNjmj1Þ=2�~Njm

i¼1 Br
i ðmÞ; ð2Þ

A ¼ ½ðNjmj1Þ=2�~Njm
i¼1 Ar

i ðmÞ: ð3Þ
For a sequence of N intervals, if xm(i) is an epoch of m consecutive intervals

starting at index i and running from i = 1, I, N j m, then Br
i(m) denotes the

number of epochs xm(j) within r of xm(i), for i m j, multiplied by (N j m j

1)j1, and Ar
i(m) denotes the number of epochs xm+1(j) within r of xm+1(i), for

i m j, multiplied by (N j m j 1)j1 (26).
Parametric values (N = 200, m = 2, r = 6) were established from previous

work (14, 16, 17). A higher SampEn implies a signal with more complexity
as well as a higher likelihood that the signal belongs to a healthy patient
(22, 26Y28).

Statistical analyses
Normality was not assumed for means within each group and across all

records because of the small sample size. All data sets were analyzed using
Wilcoxon tests for nonparametric distributions. Initial multivariate logistic
regression analyses were also done for all subjects with independent variables
of age, height, race, and weight and with dependent variables of HR, SBP,
DBP, MAP, RR, and SI. These analyses excluded HRV/HRC values. Factors
that were not significant (P 9 0.05) were removed from the model via back-
ward elimination. A second set of analyses were done for dependent variables
of HR, SBP, DBP, MAP, RR, and SI, adding HRV and HRC for performance
comparisons with the initial set. In addition, a third and fourth set of analyses
were performed for all subjects in order to include GCS scores, with and
without HRV and HRC as dependent variables, respectively.

Machine learning analyses and modeling was performed using artificial
neural networks and multilayer perceptron models for all subjects with vital
signs, HRV, HRC, and GCS scores. Receiver operating characteristic (ROC)
curves were obtained to examine the discriminating power of the models for
the outcome of at least one LSI.

The accuracy of the statistical models was assessed using sensitivity and
specificity scores. The power of demographics, vital sign measurements, HRV,
HRC, and GCS scores to identify whether LSIs were performed was estimated
using multivariate logistic regression and ML (neural networks, multilayer
perceptrons). JMP version 9.0.0 (SAS Institute, Cary, NC) and the R Language
(http://www.r-project.org/), a well-known open-source statistical software pack-
age, were used for statistical analyses.

RESULTS

Physiologic data were collected on a convenience sample of

104 patients. Patient demographics are shown in Table 1.
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Quartiles were established for age analysis. Race and age were

not statistically different between those patients who received

at least one LSI and those who received none, nor did race

predispose to an LSI. Likewise, increasing patient age did not

increase the frequency of an LSI in this sample/study. Of these

104 patients, 69% (72/104) did not receive an LSI. The other

31% (32/104) of patients received a total of 75 LSIs, of which

2% (2/104) of patients later died. Overall, 41% (31/75) of the

LSIs were performed prehospital, and 59% (44/75) in the ED.

Importantly, the demographics of the chosen population in-

cluded HRs ranging from 53 to 140 beats/min, SBPs ranging

from 70 to 180 mmHg, and various types of injuries and LSIs.

This cohort provided the ECG morphology for HRV and HRC

calculations.

Interventions performed on these 104 patients and classified

as lifesaving by a multidisciplinary team of trauma experts

are shown in Table 2. Interventions consisted of the following:

26 endotracheal intubations, 19 transfusions, 15 tube thora-

costomies, seven cardiopulmonary resuscitations, one needle

decompression, one pericardiocentesis, one cricothyrotomy,

one thoracotomy, and four tourniquets.

Means of HRV and HRC statistics, SDs, and P values ob-

tained via Wilcoxon tests for LSI and non-LSI patient groups

are shown in Table 3. This table was used to confirm whether

HRV and HRC can discriminate between the two patient

groups; no other variables were included. Mean and minimum

HRC (SampEn) values for patients who received at least one

LSI were consistent with the fact that this group often has

lower HRC than do patients who did not receive any LSI (14, 17).

Mean HRV (HF-LF power spectrum ratio) values were not

consistent with the fact that lower HRV is associated with

increasing performance of LSIs.

For the first two sets of multivariate logistic regression anal-

yses, results showed that increasing mean HR and decreasing

total GCS score were associated with an increased risk for LSIs.

Age, height, race, and weight were removed from the final

models via backward elimination because they were not signif-

icantly associated with LSIs. In the model for vital signs alone

(Table 4), odds ratios were 1.05 (95% confidence interval [CI],

1.03Y1.09; P G 0.0001) for mean HR (per beats/min increase).

In the model for vital signs and GCS scores (Table 5), odds

TABLE 1. Demographics

All patients LSI patients Prehospital LSIs ED LSIs

# % # % # % # %

Variable N N/104 n n/N i i/31 j j/44

All patients 104 100 32 31 31 100 44 100

Injury type

Blunt 94 90 29 31 27 87 42 95

Penetrating 10 10 3 30 4 13 2 5

Total GCS*

Mean 12 T 5

3 22 21 21 95 26 84 29 66

4 1 1 1 100 1 4 0 0

13 3 3 0 0 0 0 0 0

14 23 22 3 13 2 6 3 7

15 54 52 6 11 0 0 10 23

Unknown 1 1 1 100 2 6 2 4

Motor GCS*

Mean 5 T 2

1 22 21 21 95 26 84 29 66

2 1 1 1 100 1 4 0 0

6 80 77 9 11 2 6 13 30

Unknown 1 1 1 100 2 6 2 4

Gender

Female 22 21 6 27 8 26 6 14

Male 82 79 26 32 23 74 38 86

Race

White/Caucasian 62 60 18 29 17 55 27 62

Black 11 10 3 27 3 10 5 11

Hispanic 23 22 11 50 11 35 12 27

Asian/Pacific 1 1 0 0 0 0 0 0

Not recorded 7 7 0 0 0 0 0 0

Age, y

Mean 40 T 16

Quartiles

18Y26 26 25 6 23 6 19 11 25

27Y37 26 25 7 27 7 23 6 14

38Y51 26 25 9 35 7 23 7 16

52Y72 26 25 10 38 11 35 20 45

HR,* beats/min

Mean 93 T 19

Quartiles

53Y80 29 28 8 28 6 20 11 25

81Y95 26 25 2 8 1 3 2 4

96Y108 25 24 8 32 9 29 17 39

110Y140 21 20 13 62 14 45 14 32

Unknown 3 3 1 33 1 3 0 0

SBP,* mmHg

Mean 135 T 22

Quartiles

70Y125 26 25 13 50 12 39 18 41

126Y138 27 26 4 15 3 10 3 7

139Y150 28 27 6 21 9 29 14 32

151Y180 21 20 8 38 6 19 9 20

Unknown 2 2 1 50 1 3 0 0

RR,* breaths/min

Mean 17 T 3

Quartiles

3Y15 19 18 4 21 4 13 4 9

16 20 19 4 20 1 4 9 20

17Y18 25 24 3 12 2 6 6 14

20Y26 22 21 4 18 2 6 5 11

Unknown 18 17 17 94 22 71 20 46

*Denotes entry values taken from the run sheet.

TABLE 1. Continued

All patients LSI patients Prehospital LSIs ED LSIs

# % # % # % # %

Variable N N/104 n n/N i i/31 j j/44
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ratios were 1.05 (95% CI, 1.01Y1.11;P = 0.02) for mean HR (per

beats/min increase) and 0.68 (95% CI, 0.58Y0.78; P G 0.0001)

for total GCS score (per unit increase).

Inclusion of HRC in the multivariate logistic regression

analyses showed that decreasing minimum HRC was also as-

sociated with an increased risk for LSIs. In the model for vital

signs and HRC (Table 4), odds ratios were 1.05 (95% CI,

1.02Y1.08; P = 0.003) for mean HR (per beats/min increase)

and 0.00001 (95% CI, 0.00Y0.05; P = 0.012) for minimum

HRC (per unit increase). In the model for GCS scores and

HRC (Table 5), odds ratios were 0.69 (95% CI, 0.59Y0.78; P G
0.0001) for total GCS score (per unit increase) and 0.002 (95% CI,

0.00Y11.29; P = 0.16) for minimum HRC (per unit increase).

Receiver operating characteristic curves (Fig. 1) demon-

strated better identification for LSIs using HR and HRC (area

under the curve [AUC] of 0.81) than using HR alone (AUC of

0.73). Likewise, ROC curves (Fig. 2) demonstrated better

identification for LSIs using total GCS score and HRC (AUC

of 0.94) than using total GCS score and HR (AUC of 0.92).

Importantly, multiple ML models were developed, trained,

and compared for the outcomes of at least one LSI and no

LSIs. A model consisting of a multilayer perceptron with three

inputs (mean HR, total GCS score, minimum HRC) and three

hidden nodes yielded the best results (Fig. 3). Receiver oper-

ating characteristic curves (Fig. 4) demonstrated that an ML

model using HR, total GCS score, and HRC (AUC of 0.99) had

superior performance over multivariate logistic regression

models (Figs. 1 and 2) for identifying the needs for LSIs in

trauma patients.

DISCUSSION

This study examined the utility of standard vital signs, HRV,

HRC, and ML for predicting the need for LSIs in trauma pa-

tients by comparing the performance of multivariate logistic

regression identification versus ML technologies. Previous

studies analyzed only traditional vital signs (29) or a combi-

nation of HRV, HRC, and ML (17) for discriminating between

LSI and non-LSI patients. In the former case, neither HRC nor

ML was used for identifying LSI patients, and in the latter

case, neither standard vital signs nor GCS scores were used for

identifying LSI patients, resulting in models achieving ROC

AUC of no more than 0.868. Likewise, no comparisons were

performed using different models. Baxt and colleagues used

the motor component of the GCS score for analysis of trauma

patients, but in the context of triage, not the identification of

trauma patients receiving LSIs (30). Recent work reported the

TABLE 2. Lifesaving interventions

LSIs n % (n/75)

Prehospital 31 41

Blood 3 4

Cardiopulmonary resuscitation 4 5

Chest tube 0 0

Intubation 22 29

Needle decompression 0 0

Pericardiocentesis 0 0

Surgical cricothyrotomy 0 0

Thoracotomy 0 0

Tourniquet 2 3

ED 44 59

Angio nonembolized 0 0

Angio embolized 0 0

Blood 16 22

Cardiopulmonary resuscitation 3 4

Cardioversion 0 0

Chest tube 1 10 14

Chest tube 2 5 7

Intubation 4 5

Needle decompression 1 1

Pericardiocentesis 1 1

Surgical cricothyrotomy 1 1

Thoracotomy 1 1

Tourniquet 2 3

Total 75 100

TABLE 3. Comparison of HRV and HRC values between
patient groups

Measure

LSI, no. patients
(n = 32)

NLSI, no. patients
(n = 72)

PMean SD Mean SD

Mean HRV 1.527 0.526 1.527 0.366 0.701

Maximum HRV 5.061 1.477 4.091 1.168 0.001

Minimum HRV 0.452 0.217 0.423 0.182 0.660

Mean HRC 0.595 0.223 0.675 0.210 0.158

Maximum HRC 1.230 0.222 1.218 0.169 0.206

Minimum HRC 0.045 0.068 0.111 0.100 0.001

NLSI indicates nonlifesaving intervention.

TABLE 4. Logistic regression models with various risk factors
(excluding GCS) for LSIs

Variable Odds ratio for LSIs (95% CI)* P

Mean HR 1.05 (1.03Y1.09) G0.0001

With HRC

Mean HR 1.05 (1.02Y1.08) 0.003

Minimum HRC 0.00001 (0.00Y0.05) 0.012

*Odds ratios for measurements reflect per-unit increase.

TABLE 5. Logistic regression models with various risk factors
(including GCS) for LSIs

Variable Odds ratio for LSIs (95% CI)* P

Mean HR 1.05 (1.01Y1.11) 0.02

Total GCS score 0.68 (0.58Y0.78) G0.0001

With HRC

Total GCS score 0.69 (0.59Y0.78) G0.0001

Minimum HRC 0.002 (0.00Y11.29) 0.16

*Odds ratios for measurements reflect per-unit increase.
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development and validation of a real-time LSI prediction sys-

tem but excluded HRV and HRC analyses (6). A novelty of

this study was the exploration of traditional and new vital signs

for predicting LSIs, showing that an ML model was superior

in performance over multivariate logistic regression models.

Based on our results, statistics derived from the WVSM data

confirmed that HRC alone may be able to discriminate between

those patients who received one or more LSIs and those who

received none. However, because of noise in the ECG waveforms

and the sensitivity of HRV to noise, this study could not show

that HRV differs between LSI and non-LSI patients. In this case,

noise in the ECG waveforms prevented accurate calculation of

HRV (HF-LF power spectrum ratio) in many patients.

In this study, increasing HR mean increased the odds of an

LSI by approximately 5%. In addition, the presence of de-

creasing minimum HRC without GCS scores in the multivariate

logistic regression model increased the odds of an LSI

by more than 1,000%. These findings appeared to be similar to

previous work, which reported that lower HRC in patients could

lead to more expeditious identification of battlefield casualties

in need of LSIs (14, 17). When GCS scores were incorporated

into the logistic regression models, the presence of HRC was

not as significant. Again, these findings agreed with earlier

work, which concluded that GCS scores reliably identify the

need for prehospital LSIs in trauma patients (29). These results

FIG. 1. Receiver operating characteristic curves for models (excluding
GCS scores). Receiver operating characteristic curves were obtained to ex-
amine the discriminating power of multivariate logistic regression models (ex-
cluding GCS scores) for the outcome of at least one LSI in 104 subjects. The
curves demonstrated better LSI identification for models using both vital signs
and HRC (AUC of 0.81) than for models using only vital signs (AUC of 0.73).

FIG. 2. Receiver operating characteristic curves for models (including
GCS scores). Receiver operating characteristic curves were obtained to
examine the discriminating power of multivariate logistic regression models
(including GCS scores) for the outcome of at least one LSI in 104 subjects.
The curves demonstrated better LSI identification for models using vital signs,
GCS scores, and HRC (AUC of 0.94) than for models using only vital signs
and GCS scores (AUC of 0.92).

FIG. 3. Three-layer perceptron model. After developing and training
multiple ML models for the outcomes of at least one LSI and no LSIs, one best
model was selected. The model consisted of a multilayer perceptron with
three inputs (mean HR, GCS score, and minimum HRC [min HRC]) and three
hidden nodes for identifying LSI needs.

FIG. 4. Receiver operating characteristic curves for a three-layer
perceptron model. Receiver operating characteristic curves were obtained
to examine the discriminating power of an ML model (three-layer perceptron
with three inputs [mean HR, GCS score, and HRC] and three hidden nodes)
for the outcome of at least one LSI and no LSIs in 104 subjects. The curves
demonstrated superior LSI identification performance (AUC of 0.99) for at
least one LSI and no LSIs.
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also appeared similar to the work of Baxt and colleagues (30),

who used the GCS motor score to develop a triage rule.

Importantly, this study demonstrated that multivariate lo-

gistic regression models incorporating HRC could increase the

LSI identification accuracy for this cohort. The hypothesis that

an ML model utilizing a combination of vital signs, HRV, and

HRC to identify LSI needs could outperform multivariate lo-

gistic regression models utilizing a similar combination was

shown through a comparison of ROC curves and AUC results.

It is important to point out why models utilizing and not

utilizing total GCS scores were considered separately in this

study. GCS scores when available are convenient but do not

always support the concepts of automation and continuous

data analysis, especially within a battlefield environment. In

other words, GCS scores require physical examination of the

patient and are not always available when basing treatment de-

cisions based solely on electronic data (e.g., evacuation). Au-

tomation and continuous data analysis have many potential

implications for both military and civilian trauma care. Con-

stant physiologic observations and data could enhance the

medic’s ability to assess and treat battlefield and civilian inju-

ries. In addition, continuous physiologic data could improve

triage and treatment of trauma patients for both military and

civilian trauma centers (2, 5, 6). This study showed that models

not utilizing GCS scores were still able to perform LSI iden-

tifications with greater than 80% accuracy. By integrating

surrogate injury scores (suitable for continuous data analysis)

along with vital signs and HRC into this study’s models, it is

possible to preclude use of GCS scores while increasing LSI

identification accuracy. This hypothesis could be a future

study using either the same WVSM data set or a larger data set

reflecting blunt and penetrating injuries.

The results of this study suggest that HRV for a trauma

patient cohort may require more careful examination of un-

derlying waveforms before use in a clinical setting. By screening

out unreliable ECG waveforms and resulting HRV measure-

ments from further analysis (17), this study might have con-

firmed that HRV can discriminate between those patients who

received one or more LSIs and those who received none. This

supports evidence that HRV is lower in LSI patients than in

non-LSI patients (17).

A major implication of this study was that development of

CDS systems should utilize vital signs, HRC, ML, and other

information in order to achieve more accurate diagnostic ca-

pabilities. In addition, HRC may be more suitable for clini-

cal use when analyzed in conjunction with vital signs. Future

studies may include indicators of numeric and waveform data

quality to provide a more comprehensive model for predictions

of outcomes in trauma patients.

Limitations

This study had several limitations. The size of the data set

was small; i.e., it contained data from 104 patients in total.

Moreover, the results were preliminary because of the data set

size and the criteria for selecting the data. No injury severity

scores were recorded. Lifesaving interventions were recorded

only when the nurse/paramedic manually pressed a button on

the WVSM data-capture-and-display interface. Because of this

limitation, the study suffered from scarcity of recorded times of

LSIs needed to validate model development and performance.

Lastly, this study did not consider separate analyses for ex-

amining the discriminating power of the models for the out-

come of at least one prehospital LSI or one ED LSI, nor did

models incorporate trends to determine their utility. A strat-

egy similar to this study could be applied to perform these

analyses in the future.

In summary, this study showed the power of vital sign

measurements, HRC, and ML to identify whether LSIs were

performed in 104 trauma patients with blunt or penetrating in-

juries. An ML model was shown to be superior over various

logistic regression models. Development of CDS systems

should utilize vital signs, HRC, and ML in order to achieve

more accurate diagnostic capabilities, such as identification of

needs for LSIs in trauma patients.
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